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Recent interest in describing the spatial distribution of weeds and studying their
association with site properties has increased the use of interpolation to estimate
weed seedling density from spatially referenced data. In addition, farmers and con-
sultants adopting elements of site-specific farming practices are using interpolation
methods for mapping weed densities as well as soil properties. This study was con-
ducted to compare the performance of four interpolation methods, namely inverse-
distance weighting (IDW), ordinary point kriging (OPK), minimum surface cur-
vature (MC), and multiquadric radial basis function (MUL), with respect to their
ability to map weed-seedling densities. These methods were evaluated on data from
four weed species, velvetleaf, hemp dogbane, common sunflower, and foxtail species,
of contrasting biology and infestation levels in corn and soybean production fields
in Nebraska. Mean absolute difference (MAD) and root mean square (RMS) between
the observed point sample data and the estimated weed seedling density surfaces
were used to evaluate the performance of the interpolation methods. Four neigh-
borhood search types were compared within each interpolation method, and Search3
(12 to 16 neighboring locations) generated an interpolated surface with the smallest
MAD and RMS indicating the highest precision. IDW with a power coefficient of
p 5 4 gave the smallest MAD and RMS, as did a test with an elliptical search and
no anisotropy. The level of precision of all four interpolation methods was very poor
for weed species with low infestation levels (. 75% of field weed-free; MAD ranged
from 100 to 187% of the observed mean density), whereas precision was improved
for weed species with high infestation levels (, 25% of field weed-free; MAD ranged
from 45 to 85%). No single interpolator appears to be more precise than another.
Implications of this study indicate that grid sample spacing and quadrat size are
more important than the specific interpolation method chosen.

Nomenclature: Common sunflower, Helianthus annuus L. HELAN; foxtail species,
Setaria spp. SETSS; hemp dogbane, Apocynum cannabinum L. APCCA; velvetleaf,
Abutilon theophrasti Medicus ABUTH; corn, Zea mays L.; soybean, Glycine max (L.)
Merr.

Key words: Inverse-distance weighting, kriging, minimum curvature, multiquad-
ric, radial basis function, ABUTH, APCCA, HELAN, SETSS.

Weed species occur as aggregated or patchy populations
in agricultural fields. Population densities vary greatly across
individual fields, making sampling to characterize the infes-
tation level problematic (Cardina et al. 1995; Johnson et al.
1995; Mortensen et al. 1993; Wiles et al. 1992; Wilson and
Brain 1991). Research is underway to assess the use and
value of maps that describe the spatial distribution of weed
densities in modeling weed population dynamics (Wallinga
1995) and to guide the application of weed control practices
on individual fields (Gerhards et al. 1997a; Heisel et al.
1999; Williams et al. 1999). Understanding spatial weed
dynamics and using site-specific weed control could reduce
input costs (Brain and Cousens 1990; Lindquist et al. 1998;
Williams et al. 1999), reduce the environmental effect of
control practices, and enhance control of patchy weed pop-
ulations (Dieleman et al. 1999). But the accuracy of the
interpolation methods from which weed seedling density
maps are made has not been evaluated.

Spatial interpolation is a method of estimating variables
such as weed seedling density at unobserved locations as well
as reestimating variables at observed locations. There are two
general groups of interpolation methods: global methods

and local methods of interpolation. In global methods a
model is constructed from all observations, and the esti-
mated values at any point in the study area are dependent
on all the sampling points. Small-scale heterogeneity is not
described well, and only long-range variations such as gra-
dients or major patches are modeled (Dessaint and Caus-
sanel 1994). In local methods a model is constructed from
all observations, but only a subset of data is used to estimate
values. Each estimated value depends on the neighboring
sampling points only. Consequently, small-scale heteroge-
neity may be described.

Dessaint and Caussanel (1994) used trend surface anal-
ysis, a global method of interpolation, to describe the weed
community distribution in a corn field. They fit a polyno-
mial surface to spatially referenced point sample weed den-
sity values. Once the long-range variation was removed, the
residual variation was analyzed using local methods of in-
terpolation. The local methods used in weed science studies
include linear triangulation (Gerhards et al. 1997b) and
kriging (Cardina et al. 1995; Donald 1994; Johnson et al.
1996). In the linear triangulation method the nearest three
sampling point values are weighted equally when estimating
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TABLE 1. Semivariogram model parameters (active lag and lag distance, selected isotropic model, nugget [C0], sill [C0 1 C], range [A0
or 3A0], and coefficient of determination [r2]) as determined in GS1 and used for input in Surfer for the four weed species in two field
sites in Nebraska.

Site Weed species Active lag Lag distance
Semivariogram

model C0 C0 1 C A0 3A0 r2

m m

Saline County ABUTH
APCCA

110
110

8.5
8.5

Exponential
Exponential

49.4
0.38

160.8
1.90

18.9
27.0

—
—

0.82
0.97

Hall County SETSS
HELAN

366
366

15
15

Spherical
Spherical

177.6
0.424

487.4
0.870

—
—

237
409

0.92
0.97

TABLE 2. Description of search types that were compared among
spatial interpolation methods.

Type

Circular search radius

Saline
County

Hall
County Data points

m no.

Search1
Search2
Search3
Search4

8
11
15
22

13.9
19.2
26.1
38.3

2–4
4–9

12–16
29–32

a value at an unobserved location (Isaaks and Srivastava
1989). Kriging uses the semivariogram to incorporate
weights and provides a measure of error associated with each
predicted value (Gotway et al. 1996; Isaaks and Srivastava
1989). Although the above-mentioned methods have all
been reported to provide adequate results, there has been no
systematic comparison to determine which spatial interpo-
lation method is the best.

Ideally, an interpolator would require a limited number
of point-sampled weed density data and would accurately
estimate density in unsampled locations. Such estimation is
particularly challenging for weeds because, unlike soil and
rock formations for which many of the interpolation meth-
ods were developed, weed density can be highly noncontin-
uous and very patchy. Therefore, the goal of this research
was to determine if a single spatial interpolator performed
consistently well across weed species and fields. The accuracy
required for an interpolated weed seedling density map will
depend on its intended use: modeling of weed population
dynamics or implementation of site-specific weed manage-
ment. Precision in estimating the entire density range is im-
portant for population dynamics modeling, whereas for site-
specific management uses, it is more important to accurately
interpolate weed-free and low-threshold density areas of the
field. The specific objectives were to evaluate the sensitivity
of interpolated outcomes to variation in input parameters
and to determine which interpolator results in consistent
and accurate weed seedling density estimates for population
dynamics modeling.

Materials and Methods

Two on-farm study sites characteristic of corn or soybean
production systems were chosen in eastern and central Ne-
braska. The first site, located in Saline County in eastern
Nebraska, was a 4-ha portion of a field planted with soybean
in 1992. A two-dimensional grid (29 rows by 28 columns)

with 7-m intervals was superimposed on the field. At each
grid point a 1- by 0.76-m quadrat was placed lengthwise
between the crop rows. Just before postemergence (POST)
weed control applications, all weeds were identified and
counted at each grid point. Velvetleaf representing a high
level of weed infestation (2.3% of field weed-free) and hemp
dogbane representing a patchy infestation (82.8% of field
weed-free) were the weed species chosen for interpolation.
The second site, located in Hall County in central Nebraska,
was a 15-ha portion of a field planted with corn in 1996.
A two-dimensional grid (64 rows by 17 columns) with 12.1-
m intervals was superimposed on the field. At each grid
point a 1- by 0.38-m quadrat was placed lengthwise between
the crop rows just before POST weed control applications.
All weeds were identified and counted. Foxtail species (pre-
dominantly giant [Setaria faberi] and green foxtail [S. viri-
dis]) representing a high level of infestation (23.7% of field
weed-free) and common sunflower representing a patchy in-
festation (93.5% of field weed-free) were the weed species
chosen for interpolation.

Interpolation Methods

Four local spatial interpolation methods were selected: in-
verse-distance weighting (IDW), ordinary point kriging
(OPK), minimum surface curvature (MC), and a multi-
quadric radial basis function (MUL). These four procedures
are representative of a broad range of interpolation methods.
IDW has become the applied industry’s standard method
for yield mapping and soil property interpolation. Kriging
has been evaluated in research-oriented weed ecology studies
(Cardina et al. 1995; Donald 1994; Johnson et al. 1996).
MC was developed as an early computerized approach to
generating contour maps of geophysical data (Briggs 1974),
whereas MULs have been used to model the spatial distri-
bution of rainfall over large geographic areas (Abtew et al.
1993). All interpolators were fit using Surfer,1 whereas the
initial parameter inputs for OPK were determined in GS1.2
These interpolation methods estimate values at unobserved
locations from the weighted averages of values from nearby
observed locations. The methods differ in how they assign
these weights.

Inverse-Distance Weighting

The weights are chosen so that the contribution of any
one value at an observed location to the estimated value at
an unobserved location decreases with distance. The weight
for each observation is inversely proportional to a power of
its distance from the location being estimated:
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TABLE 3. Descriptive statistics (number of samples [n], mean, standard deviation [SD], maximum, and percent weed-free) for original,
prediction, and validation data subsets of weed populations identified in two field sites in Nebraska.

Site
Prediction
data subset

Validation
data subset Mean SD Max. Weed-free Mean SD Max. Weed-free

ABUTHa APCCAb

n no. per 0.76 m2 % no. per 0.76 m2 %
Saline County Original

X1
X2
Y1
Y2
X1Y1
X1Y2
X2Y1
X2Y2

812
406
406
420
392
210
196
210
196

0
406
406
392
420
602
616
602
616

15.4
19.5
11.3
15.4
15.5
19.7
19.4
11.0
11.6

13.0
13.1
11.5
13.3
12.7
13.9
12.2
11.0
12.0

92
81
92
92
84
81
63
92
84

2.3
0.5
4.2
3.1
1.5
1.0
0.0
5.2
3.1

0.46
0.40
0.53
0.52
0.40
0.46
0.33
0.57
0.48

1.41
1.20
1.59
1.46
1.35
1.30
1.07
1.60
1.57

13
13
12
13
10
13

9
12
10

82.8
82.8
82.8
81.0
85.2
79.5
86.2
81.4
84.2

SETSSc HELANd

number per 0.38 m2 % number per 0.38 m2 %
Hall County Original

X1
X2
Y1
Y2
X1Y1
X1Y2
X2Y1
X2Y2

1,088
576
512
544
544
288
288
256
256

0
512
576
544
544
800
800
832
832

14.4
13.6
15.3
13.7
15.1
13.4
13.9
14.1
16.5

20.0
18.8
21.2
19.6
20.4
19.0
18.6
20.2
22.2

98
98
98
98
98
98
98
94
98

23.7
23.8
23.6
25.2
22.2
26.0
21.5
24.2
23.0

0.15
0.18
0.11
0.17
0.13
0.23
0.14
0.10
0.12

0.76
0.84
0.65
0.86
0.64
1.00
0.62
0.65
0.65

9
8
9
9
7
8
5
9
7

93.5
92.7
94.3
93.0
93.9
91.7
93.8
94.5
94.1

a ABUTH, velvetleaf, Abutilon theophrasti Medicus.
b APCCA, hemp dogbane, Apocynum cannabinum L.
c SETSS, foxtail species, Setaria species.
d HELAN, common sunflower, Helianthus annuus L.

FIGURE 1. Observed locations (o) and interpolated output locations (x) that
are equidistantly offset from observed locations for the Saline County field
site in Nebraska.

n 1
ZO ipdi51 iẐ 5 [1]n 1O pdi51 i

where d1, d2, . . . , dn are the distances from each of the n
observed locations to the location being estimated, Ẑ, and

Z1, Z2, . . . , Zn are the observed values at those locations
(Isaaks and Srivastava 1989). The exponent, p, adjusts the
weights to be inversely proportional to any power of the
distance, and four values were compared (p 5 0.5, 1, 2, and
4). The larger the power, the smaller is the effect of distance
on the weights.

Ordinary Point Kriging

OPK incorporates the distance between the observed lo-
cations using the semivariogram, a model of spatial auto-
correlation present in the data set (Isaaks and Srivastava
1989). Weights are selected to minimize prediction mean-
square error subject to an unbiased constraint and are ob-
tained by solving kriging equations (Gotway et al. 1996).
The semivariance is half the average squared difference be-
tween paired observed locations that are separated by a given
lag distance:

N(h)1 2g (h) 5 N(h) [z (x 1 h) 2 z (x )] [2]Oi i i i i1 22 i51

where gi(h) is the experimental semivariance for lag distance
h, and N(h) is the number of pairs of observed locations
separated by a given lag distance (Isaaks and Srivastava
1989).

Experimental semivariances were calculated and semiva-
riogram models fit using GS1. A single model was selected
for each weed species and was based on the largest coeffi-
cient of determination (Table 1). The spherical isotropic
(independent of direction) semivariogram model is defined
by
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FIGURE 2. Spatial distribution of two weed species, namely, velvetleaf (Abutilon theophrasti Medicus ABUTH) and hemp dogbane (Apocynum cannabinum
L. APCCA), without interpolation in the Saline County field site in Nebraska.

3 h 1 h
g(h) 5 Co 1 C 2 31 21 2 1 21 2[ ]2 Ao 2 Ao

0 , h , Ao [3a]

g(h) 5 Co 1 C 5 sill h $ Ao [3b]

where C0, C0 1 C, and A0 are nugget variance, sill (nugget
plus structural variance), and range (lag distance to the sill),
respectively. Nugget variance is the semivariogram value at
very small lag distances, whereas sill is the value of the se-
mivariogram at the lag distance where no more change in
the variance is observed. Range is the lag distance where the
semivariogram reaches the sill (Isaaks and Srivastava 1989).
The exponential isotropic model is described by

h
g(h) 5 Co 1 C 1 2 exp 2 [4]1 2[ ]a

where a is one-third of the apparent range shown on the
semivariogram (Isaaks and Srivastava 1989). The parameters
of the appropriate semivariogram model determined in GS1
were used in Surfer for the OPK operation.

Minimum Surface Curvature

The MC process is analogous to fitting a thin elastic plate
through a set of 12 neighboring data locations (Briggs 1974;
Cooke et al. 1993; Smith and Wessel 1990). This surface
honors the 12 original data values and satisfies the equation

4 4 4] Z ] Z ] Z
1 2 1 5 0 [5]4 2 2 41 2]x ]x y ]y

at all observed locations (Cooke et al. 1993). On a discrete,
gridded surface this corresponds to solving simultaneously
the finite difference equation

Z 1 Z 1 Z 1 Zi12,j i,j12 i22,j i,j22

1 2(Z 1 Z 1 Z 1 Z )i11,j11 i21,j11 i11,j21 i21,j21

2 8(Z 1 Z 1 Z 1 Z ) 1 20Z 5 0 [6]i11,j i21,j i,j21 i,j11 ij

where Zij are the observed data values at coordinates ij away
from the location being estimated (Briggs 1974; Cooke et
al. 1993). The MC method requires two user-defined input
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FIGURE 3. Spatial distribution of two weed species, namely, foxtail species
(Setaria spp. SETSS) and common sunflower (Helianthus annuus L. HE-
LAN), without interpolation in the Hall County field site in Nebraska.

parameters, maximum residuals, and maximum iterations to
aid in the convergence of Equation 6.

Multiquadric Radial Basis Function

Rather than the weights decreasing proportionally with
distance as in the IDW methods, the relationship to the
neighboring observed locations with MUL is an inverted
quadric surface. The relative influence of observed values
increases with distance (Abtew et al. 1993; Watson 1992).
Given the observation Z at location si, a system of simul-
taneous linear equations is set up and solved for the coef-

ficients of ai, which sum to zero. This is illustrated for four
locations, but any number may be used (Watson 1992):

(e 1 C(s 2 s ) 1 C(s 2 s ) 1 C(s 2 s )) * a 5 Z(s )1 1 2 1 3 1 4 1 1

(C(s 2 s ) 1 e 1 C(s 2 s ) 1 C(s 2 s )) * a 5 Z(s )2 1 2 2 3 2 4 2 2

(C(s 2 s ) 1 C(s 2 s ) 1 e 1 C(s 2 s )) * a 5 Z(s )3 1 3 2 3 3 4 3 3

(C(s 2 s ) 1 C(s 2 s ) 1 C(s 2 s ) 1 e ) * a 5 Z(s )4 1 4 2 4 3 4 4 4

[7]

where
2 2 2 0.5C(s 2 s ) 5 ((s 2 s ) 1 (s 2 s ) 1 e )i j ix jx iy jy j [8]

is a basis function of the distance on the x–y plane between
si and sj, modified by the arbitrary nonnegative constant ej.
If X is the location to be estimated with Cartesian coordi-
nates (x, y) and the coefficients, ai, have been determined,
then the interpolated value F(x, y) is

F(x, y) 5 a C(X 2 s ) 1 a C(X 2 s ) 1 a C(X 2 s )1 1 2 2 3 3

1 a C(X 2 s ) [9]4 4

where C is the basis function as shown in Equation 8 (Nuss
and Titley 1994; Watson 1992).

Performance Evaluation of Interpolation Methods
For all interpolators except MC, search options vary and

must be specified. These search options include minimum
and maximum number of neighboring observed locations,
shape of the search ellipse, direction to retrieve neighbors,
and search radius. A series of search types were defined and
compared within the IDW, OPK, and MUL interpolators
(Table 2). Additionally, directional patterns were observed
for weed species in the Saline County field site. Based on
fitting directional semivariograms in GS1, the major axis
(0, North) was three times greater than the minor axis (90,
East) (data not shown). Therefore, an anisotropic ratio of
0.34 with the long axis oriented in the direction of crop
rows was added to the four interpolators for velvetleaf and
hemp dogbane. Additional search options tested were a cir-
cular or elliptical (no extra weight) search with or without
the anisotropic ratio. Weed seedling density values were es-
timated for spatial locations on a 7- by 7-m (Saline County
field site) or 12.1- by 12.1-m (Hall County field site) output
grid that was equidistantly offset from the observed locations
(Figure 1). This would allow us to potentially generate the
largest interpolation errors because interpolated output lo-
cations would be the farthest away from our observed input
locations. It was important to have this output grid set to
equivalent spacing because small deviations from regularity
exaggerated the errors among interpolators. Residual values
were then calculated representing the difference between the
interpolated surface and the value at the observed input lo-
cation.

Four prediction data subsets with corresponding valida-
tion data subsets were created by systematically removing
one-half of the data in either the x or y direction from the
original data sets (Table 3) to compare among interpolation
methods for a given weed species. Four additional prediction
or validation data subsets were created by further system-
atically removing half the data, resulting in prediction data
subsets that contained a quarter of the original data (Table
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TABLE 4. MAD and RMS of residuals between interpolated surface and original data set when comparing among search types for each
weed species and spatial interpolation method.a

Weed speciesb Interpolator

MAD

Search1
and Search2 Search3 Search4

RMS

Search1
and Search2 Search3 Search4

ABUTH IDW-2
OPK
MC
MUL

7.08
7.08
—c

7.08

7.66
7.48
9.29
6.75

8.24
7.85
—

7.06

9.34
9.34
—

9.34

10.15
9.89

12.78
8.89

10.83
10.28

—
9.19

APCCA IDW-2
OPK
MC
MUL

0.44
0.44
—

0.44

0.49
0.46
0.58
0.42

0.55
0.49
—

0.45

0.91
0.91
—
0.91

1.00
0.94
1.31
0.85

1.08
0.98
—
0.89

SETSS IDW-2
OPK
MC
MUL

7.70
7.70
—

7.70

8.58
9.38

10.97
7.29

8.15
5.99
—
6.50

11.54
11.54

—
11.54

12.78
13.91
16.74
10.89

11.98
10.54

—
9.91

HELAN IDW-2
OPK
MC
MUL

0.16
0.16
—

0.16

0.18
0.20
0.22
0.17

0.15
0.11
—

0.13

0.55
0.55
—
0.55

0.59
0.65
0.81
0.53

0.50
0.45
—
0.44

a Abbreviations: MAD, mean absolute difference; RMS, root mean square; IDW-2, inverse-distance weighting squared; OPK, ordinary-point kriging;
MC, minimum surface curvature; MUL, multiquadric radial basis function.

b ABUTH, velvetleaf, Abutilon theophrasti Medicus; APCCA, hemp dogbane, Apocynum cannabinum L.; SETSS, foxtail species, Setaria species; HELAN,
common sunflower, Helianthus annuus L.

c Minimum surface curvature uses 12 neighboring observed locations for interpolation so that only Search3 is appropriate.

TABLE 5. MAD and RMS of residuals for the comparison of search options (circular or elliptical) with and without anisotropy across the
four spatial interpolation methods for weed species identified in Saline County field site.a

Weed speciesb Interpolator

MAD

No anisotropy

Circular Elliptical

With anisotropy

Circular Elliptical

RMS

No anisotropy

Circular Elliptical

With anisotropy

Circular Elliptical

ABUTH IDW-2
OPK
MC
MUL

7.66
7.48
9.29
6.75

7.39
6.76
—c

6.90

7.77
7.68
9.29
7.14

7.75
7.69
—

7.24

10.15
9.89

12.78
8.89

9.67
9.23
—

9.06

10.27
10.11
12.78

9.37

10.16
10.07

—
9.49

APCCA IDW-2
OPK
MC
MUL

0.49
0.46
0.58
0.42

0.46
0.46
—

0.43

0.51
0.49
0.58
0.45

0.49
0.48
—

0.46

1.00
0.94
1.31
0.85

0.95
0.95
—

0.87

1.03
1.00
1.31
0.92

1.02
1.00
—
0.93

a Abbreviations: MAD, mean absolute difference; RMS, root mean square; IDW-2, inverse-distance weighting squared; OPK, ordinary-point kriging;
MC, minimum surface curvature; MUL, multiquadric radial basis function.

b ABUTH, velvetleaf, Abutilon theophrasti Medicus; APCCA, hemp dogbane, Apocynum cannabinum L.; SETSS, foxtail species, Setaria species; HELAN,
common sunflower, Helianthus annuus L.

c Minimum surface curvature does not allow for an elliptical search radius to be tested.

3). IDW, OPK, MC, and MUL were used to interpolate
each prediction data subset, and in the process, weed density
values were estimated for the missing observed input loca-
tions and compared with the corresponding validation data
subset.

Two measures were used to compare search types within
an interpolator and to compare across interpolators, MAD
and RMS. The MAD between observed and estimated val-
ues can assess the precision of a spatial interpolator:

N
ˆzZ(x ) 2 Z(x )zO i i

i51MAD 5 [10]
N

where Ẑ(xi) is the estimated weed density value at location
xi, Z(xi) is the observed weed density value at location xi,

and N is the total number of observed values. MAD is a
criterion that incorporates both the bias and the spread of
the error (Gallichand et al. 1992; Isaaks and Srivastava
1989). RMS is an estimate of the global difference between
the observed and the estimated surface:

N
2ˆ[Z(x ) 2 Z(x )]O i i

i51ÎRMS 5 [11]
N

The closer the fit between the two surfaces, the smaller
the RMS value becomes. This measure was used by Cooke
et al. (1993) and Hosseini et al. (1994) to make compar-
isons among interpolation methods. A relatively small val-
ue for MAD indicates high precision between interpolated
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FIGURE 4. Velvetleaf (Abutilon theophrasti Medicus ABUTH) seedling density maps generated by inverse-distance weighting squared (IDW-2) using modified
Search3 and the four quarter-data prediction subsets, X1Y1, X1Y2, X2Y1, and X2Y2 (see text for details).

values and observed sample point data, and a relatively
small value for RMS indicates good global estimation of
the interpolated surface compared with the original sur-
face.

Results and Discussion

Weed Population Characteristics

The four weed species have different biological char-
acteristics and represent different levels of infestation in
the two fields. In the Saline County field site, velvetleaf
was widely distributed, had a high infestation level with
a mean of 15.4 seedlings per 0.76 m2 and a maximum
density of 92 seedlings per 0.76 m2 (Figure 2; Table 3).
This species has large seeds and a relatively long-lived
seedbank (Burnside et al. 1996). In this same field, hemp
dogbane provided an example of an isolated, patchy weed

population. It had a low level of infestation with a mean
density of 0.5 shoots per 0.76 m2 and a maximum density
of 13 shoots per 0.76 m2. Hemp dogbane is a perennial
weed species that predominantly reproduces from rhi-
zomes. Foxtail species represented a high infestation in the
Hall County field site, with a mean density of 14 seed-
lings per 0.38 m2 and a maximum density of 98 seedlings
observed per quadrat (Figure 3). In contrast to the bio-
logical characteristics of the previous two species, foxtail
species have small seeds and a high germination level
(Forcella et al. 1992). Common sunflower occurrence was
very low in the Hall County field site, with a mean den-
sity of 0.2 seedlings per 0.38 m2 and a maximum density
of 9 seedlings observed. Tall growth habit, large seeds, and
a relatively persistent seedbank characterize common sun-
flower (Teo-Sherrell 1996) in a similar way as velvetleaf.
Infestation levels indicate differences in weed manage-
ment of the two species in the two field sites.
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TABLE 6. MAD and RMS of residuals when comparing the interpolated surface of the half-data prediction subset with the original data
in the half-data validation subset across spatial interpolation methods for each weed species.a

Weed
speciesb Interpolator

MAD

X1 X2 Y1 Y2

RMS

X1 X2 Y1 Y2

ABUTH IDW-2
IDW-4
OPK
MC
MUL

11.67
11.68
11.68
12.09
11.74

12.22
12.24
12.22
12.39
12.26

7.82
7.20
8.18
6.98
6.96

9.02
8.25
9.44
8.14
8.00

15.62
15.72
15.61
16.10
15.80

14.85
15.01
14.81
15.63
15.15

11.06
10.35
11.45
10.20
10.12

11.21
10.50
11.63
10.62
10.32

APCCA IDW-2
IDW-4
OPK
MC
MUL

0.62
0.62
0.62
0.68
0.62

0.61
0.61
0.61
0.66
0.61

0.48
0.47
0.48
0.51
0.46

0.59
0.57
0.58
0.61
0.57

1.23
1.25
1.23
1.34
1.28

1.37
1.38
1.37
1.41
1.38

1.14
1.12
1.15
1.15
1.11

1.15
1.14
1.15
1.20
1.15

SETSS IDW-2
IDW-4
OPK
MC
MUL

10.20
10.29
10.26
10.51
10.28

11.49
11.52
11.54

9.19
9.43

9.92
9.69

10.27
9.79
9.57

9.85
9.58

10.22
9.90
9.66

15.82
16.04
15.82
16.56
16.05

17.12
17.25
17.15
15.52
15.80

14.29
14.18
14.72
15.58
15.11

15.34
15.13
15.78
14.76
14.15

HELAN IDW-2
IDW-4
OPK
MC
MUL

0.21
0.21
0.22
0.23
0.21

0.23
0.23
0.23
0.25
0.23

0.23
0.23
0.23
0.26
0.23

0.24
0.24
0.25
0.28
0.24

0.75
0.75
0.76
0.77
0.75

0.72
0.74
0.71
0.77
0.74

0.85
0.86
0.85
0.89
0.86

0.72
0.74
0.72
0.81
0.74

a Abbreviations: MAD, mean absolute difference; RMS, root mean square. IDW, inverse-distance weighting; OPK, ordinary-point kriging; MC, minimum
surface curvature; MUL, multiquadric radial basis function.

b ABUTH, velvetleaf, Abutilon theophrasti Medicus; APCCA, hemp dogbane, Apocynum cannabinum L.; SETSS, foxtail species, Setaria species; HELAN,
common sunflower, Helianthus annuus L.

Evaluation of Input Parameters

For IDW-2, OPK, and MUL interpolators, Search3 had
the smallest MAD and RMS values for velvetleaf and hemp
dogbane, with MUL having the smallest values overall (Ta-
ble 4). For foxtail species and common sunflower, Search4
had the smallest MAD values for OPK and the smallest
RMS values for MUL. Search1 and Search2 gave identical
values across spatial interpolators for each weed species, and
whereas they are small values, they do not appear to indicate
any differences. Search3 was the only appropriate search for
the MC interpolator and had MAD and RMS values that
were the highest among interpolators and across weed spe-
cies. MCs are known to have large oscillations and extra-
neous inflection points, which make them unsuitable for
gridding a range of variables (Smith and Wessel 1990), and
weed density is no exception.

As a result of this comparison, we determined that the
best search type was a modified Search3, such that the search
radius was 15 or 26.1 m depending on field site, the min-
imum number of observed locations was five, and the max-
imum number was 16. A concern with Search4 was the loss
of data at field edges because of the limiting number of data
points (29 to 32) that were brought into the search. MAD
and RMS calculations did account for the loss of informa-
tion at field edges, but this created an incomplete map. Typ-
ical search options selected by other authors were 4 to 24
neighboring locations to estimate clay content (Gallichand
and Marcotte 1993) and six neighboring locations to esti-
mate electrical conductivity and sodium absorption ratios
(Gallichand et al. 1992). A total of 24 neighboring locations
were selected to estimate nitrate-nitrogen and percent or-
ganic matter content in agricultural fields (Gotway et al.

1996) or to estimate electrical conductivity across a 16,000-
ha area (Hosseini et al. 1994).

Increasing the power coefficient for the IDW interpolator
from 0.5 to 4 decreased the value for MAD and RMS across
weed species for Search3 (data not shown). No differences
were detected for Search2 across power coefficients for each
weed species. As the value of the power coefficient increases,
the influence of distant observations increases (Isaaks and
Srivastava 1989). As the power coefficient is decreased, the
weights given to the observations become more similar. For
example, with p 5 0.5, the closest observation receives near-
ly 16% of the total weight and the farthest observation re-
ceives about 13%. As the value of p increases, the individual
weights become more dissimilar, such that the farthest sam-
ples contribute the least and the nearest samples become
more influential (Isaaks and Srivastava 1989). This appears
more appropriate for interpolation of weed seedling densities
because of their patchy nature and influence of nearer ob-
servations.

Directional patterns were observed for the weed popula-
tions found in the Saline County field site. An elliptical
search without anisotropy had the lowest MAD and RMS
values across the four spatial interpolators (Table 5). The
shape of the search radius appeared to be more important
than including an additional weighting through the aniso-
tropic ratio.

Establishing the output grid spacing to which weed
density estimates would be predicted was very important.
For example, attempting to interpolate to an output grid
spacing of equal thirds within a 7- by 7-m grid, that is,
output grid points at multiples of 2.333, systematically
introduced a bias from the original sample points. Because



52 • Weed Science 51, January–February 2003

FIGURE 5. Foxtail species (Setaria spp. SETSS) and common sunflower (Helianthus annuus L. HELAN) seedling density maps generated by four interpolation
methods, namely, inverse-distance weighting squared (IDW-2), ordinary point kriging (OPK), minimum surface curvature (MC), and multiquadric radial
basis function (MUL), using modified Search3 and X1 prediction subset (see text for details).

distance from the southwest origin increased, the output
coordinates were systematically displaced by (20.001),
(20.002), (20.003), etc. units away from the original
input coordinates. This resulted in exaggerated errors for
each spatial interpolator.

Evaluation of Spatial Interpolators

The systematic removal of data to create the prediction
or validation data subsets highlighted an important spatial
pattern of velvetleaf density, a pattern oriented in the direc-
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TABLE 7. MAD and RMS of residuals when comparing the interpolated surface of the quarter-data prediction subset with the three-
quarters original data in the validation data subset across spatial interpolation methods for each weed species.a

Weed
speciesb Interpolator

MAD

X1Y1 X1Y2 X2Y1 X2Y2

RMS

X1Y1 X1Y2 X2Y1 X2Y2

ABUTH IDW-2
IDW-4
OPK
MC
MUL

10.77
10.99
10.83
11.29
11.18

11.03
11.16
11.04
11.38
11.30

9.89
10.05

9.89
10.45
10.32

9.61
9.69
9.64

10.10
9.98

13.40
13.94
13.39
14.49
14.30

13.69
14.03
13.66
14.56
14.41

13.89
14.02
13.92
14.40
14.27

13.58
13.79
13.59
14.18
14.08

APCCA IDW-2
IDW-4
OPK
MC
MUL

0.62
0.60
0.62
0.65
0.63

0.58
0.55
0.58
0.58
0.57

0.66
0.65
0.66
0.70
0.69

0.59
0.57
0.60
0.64
0.62

1.25
1.28
1.24
1.33
1.30

1.36
1.34
1.37
1.36
1.36

1.26
1.34
1.27
1.44
1.42

1.18
1.24
1.19
1.34
1.31

SETSS IDW-2
IDW-4
OPK
MC
MUL

10.34
10.40
10.56
10.96
10.70

11.06
11.15
11.21
11.69
11.41

10.54
10.52
10.82
10.91
10.76

10.65
10.82
10.92
11.06
10.91

15.54
16.08
15.67
16.86
16.46

16.22
16.77
16.31
17.65
17.16

16.24
16.70
16.37
17.31
17.11

15.28
16.05
15.41
16.58
16.24

HELAN IDW-2
IDW-4
OPK
MC
MUL

0.27
0.27
0.27
0.31
0.30

0.24
0.24
0.24
0.27
0.26

0.20
0.20
0.21
0.22
0.21

0.21
0.21
0.21
0.24
0.23

0.73
0.83
0.68
0.91
0.86

0.80
0.84
0.78
0.87
0.85

0.71
0.74
0.72
0.78
0.76

0.75
0.79
0.72
0.83
0.81

a Abbreviations: MAD, mean absolute difference; RMS, root mean square. IDW, inverse-distance weighting; OPK, ordinary-point kriging; MC, minimum
surface curvature; MUL, multiquadric radial basis function.

b ABUTH, velvetleaf, Abutilon theophrasti Medicus; APCCA, hemp dogbane, Apocynum cannabinum L.; SETSS, foxtail species, Setaria species; HELAN,
common sunflower, Helianthus annuus L.

tion of crop rows and field traffic movement (Figure 2).
Through systematic removal in the x direction, the X1 pre-
diction data subset had a higher mean velvetleaf density
(19.5 seedlings per 0.76 m2) compared with the X2 predic-
tion data subset (11.3 seedlings per 0.76 m2). This was in
contrast to the similar velvetleaf means for the Y1 and Y2
prediction data subsets (Table 3). This pattern was also ob-
served in the quarter-data prediction subsets (Figure 4). Four
very different velvetleaf seedling density maps were gener-
ated depending on the chosen quarter-data prediction sub-
set. In general, the variation in velvetleaf mean densities
increased with fewer data points in each subset. Such a dra-
matic influence of systematic data removal was not observed
for the other three weed species.

The levels of precision (MAD) and overall estimation
(RMS) of hemp dogbane– and common sunflower–inter-
polated surfaces from half-data prediction subsets were sim-
ilar for the IDW-2, IDW-4, OPK, and MUL methods,
whereas MC had low precision and poor global estimation
(Table 6). IDW-2, IDW-4, and OPK methods resulted in
the best precision and overall estimation of the X1 and X2
velvetleaf prediction subsets, whereas MUL was the best
method for the Y1 and Y2 prediction subsets. For foxtail
species the interpolation method that gave the best level of
precision depended on the prediction data subset: IDW-2
for X1 subset, MC for X2 subset, IDW-4 for Y1 subset,
and MUL for both X2 and Y2 subsets (Table 6). Figure 5
highlights the subtle differences among interpolation meth-
ods for a given prediction data subset (X1) for both foxtail
species and common sunflower.

For low–infestation level populations, IDW-2, IDW-4,
and OPK were similar with the lowest levels of precision
(MAD) and global estimation (RMS) of hemp dogbane–

and common sunflower–interpolated surfaces for the quar-
ter-data prediction subsets (Table 7). For foxtail species,
IDW-2 resulted in the smallest MAD and RMS values
across interpolators and prediction data subsets. For velvet-
leaf, IDW-2 and OPK methods resulted in the smallest
MAD and RMS values across interpolators and quarter-data
prediction subsets (Table 7).

Interpolation precision of all methods was low for the
high-infestation weed populations, velvetleaf and foxtail
species. Mean absolute difference between estimated and
observed half-data prediction subset values ranged from
45 to 80% of the observed mean velvetleaf density and
from 66 to 80% of the observed mean density of foxtail
species (Table 7). Interpolation precision was very poor
for the low-infestation populations of hemp dogbane and
common sunflower. Mean absolute difference between es-
timated and observed half-data prediction subset values
ranged from 100 to 148% of the observed mean hemp
dogbane shoot density and from 140 to 187% of the ob-
served mean common sunflower density. This poor pre-
cision is likely because of the high variability inherent in
spatial weed population data (Hosseini et al. 1994; John-
son et al. 1996).

Implications

There is tremendous interest in using spatial distribution
maps of weed seedling densities to study and model the
spatial dynamics of weed populations and in guiding the
application of weed control practices on individual fields.
The results from this study indicate two key findings with
implications on our ability to depict accurately the spatial
distribution of weed densities in the field.
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First, among the spatial interpolation methods compared,
no single method appeared to outperform or be more ac-
curate in generating weed seedling density maps. Clearly,
MC was not appropriate, whereas the other three methods
performed equally well. Consistently across the interpolation
methods, density was underestimated in high-density por-
tions of the field. This is of concern for accurate population
dynamics modeling of density-dependent responses to weed
management applications (Dieleman and Mortensen 1999;
Dieleman et al. 1999; Neeser et al. 2002). The overesti-
mation of densities in low-density areas of a field is of less
concern for site-specific management because most practi-
tioners want to ensure that no weeds are overlooked. For
patchy, low–infestation level populations, IDW-2, IDW-4,
OPK, and MUL interpolation methods were appropriate.
For high–infestation level populations, because the available
data becomes less, IDW-2 and OPK gave the best precision
among interpolation methods.

Second, the characteristics of the chosen sampling grid, that
is, the distance between sampling points and quadrat size, can
dramatically influence weed seedling map outcomes. Often,
individual weed patches occurred between sampling points and
were not recorded. Important information is missed between
the sampling quadrats. Additionally, if the weed population is
observed to have a systematic pattern across the field, such as
the velvetleaf population in the Saline County field site, a fixed
sampling grid could under- or overrepresent the population
because of sampling anomalies. This indicates the need to ex-
plore alternative and innovative sampling strategies, for ex-
ample, increase in the number of points sampled in areas of a
field with greater uncertainty of the weed population’s spatial
distribution. Other ways of obtaining spatial weed population
data, such as remote sensing, ground-based sensing, and di-
rected sampling, can be integrated to assist in developing more
accurate weed seedling density maps.

Weed populations exhibit a unique footprint in each agri-
cultural field, ranging from low to high infestation levels and
the location in the field where a given weed species is found.
The results from this study clearly indicate that the particular
method of interpolating densities is not critical as long as poor
performers are not selected. The future challenge is to develop
general but robust rules for sampling weed populations, to
bring a diversity of data information sources together, and to
strive to generate accurate weed seedling density maps.

Sources of Materials
1 Surfer for Windows, V.6, Contouring and 3D Surface Map-

ping, Golden Software, Inc., 809 14th Street, Golden, CO 80401.
2 GS1: Geostatistics for the Environmental Sciences, Gamma

Design Software, P.O. Box 201, Plainwell, MI 49080.

Acknowledgments

This article is published as University of Nebraska Agricultural
Research Division Journal Series No. 13379.

Literature Cited

Abtew, W., J. Obeysekera, and G. Shih. 1993. Spatial analysis for monthly
rainfall in south Florida. Water Res. Bull. 29:179–188.

Brain, P. and R. Cousens. 1990. The effect of weed distribution on pre-
dictions of yield loss. J. Appl. Ecol. 27:735–742.

Briggs, I. C. 1974. Machine contouring using minimum curvature. Geo-
physics 39:39–48.

Burnside, O. C., R. G. Wilson, S. Weisberg, and K. G. Hubbard. 1996.
Seed longevity of 41 weed species buried 17 years in eastern and
western Nebraska. Weed Sci. 44:74–86.

Cardina, J., D. H. Sparrow, and E. L. McCoy. 1995. Analysis of spatial
distribution of common lambsquarters (Chenopodium album) in no-
till soybean (Glycine max). Weed Sci. 43:258–268.

Cooke, R. A., S. Mostaghimi, and J. B. Campbell. 1993. Assessment of
methods for interpolating steady-state infiltrability. Trans. ASAE 36:
1333–1341.

Dessaint, F. and J. P. Caussanel. 1994. Trend surface analysis: a simple tool
for modelling spatial patterns of weeds. Crop Prot. 13:433–438.

Dieleman, J. A. and D. A. Mortensen. 1999. Characterizing the spatial
pattern of Abutilon theophrasti seedling patches. Weed Res. 39:455–
467.

Dieleman, J. A., D. A. Mortensen, A. R. Martin, and D. Y. Wyse-Pester.
1999. Influence of velvetleaf (Abutilon theophrasti) and common sun-
flower (Helianthus annuus) density on weed management outcomes.
Weed Sci. 47:81–89. [Errata 47(2):254]

Donald, W. W. 1994. Geostatistics for mapping weeds, with a Canada
thistle (Cirsium arvense) patch as a case study. Weed Sci. 42:648–657.

Forcella, F., R. G. Wilson, K. A. Renner, J. Dekker, R. G. Harvey, D. A.
Alm, D. D. Buhler, and J. Cardina. 1992. Weed seedbanks in the
U.S. corn belt: magnitude, variation, emergence, and application.
Weed Sci. 40:636–644.

Gallichand, J., G. D. Buckland, D. Marcotte, and M. J. Hendry. 1992.
Spatial interpolation of soil salinity and sodicity for a saline soil in
southern Alberta. Can. J. Soil Sci. 72:503–516.

Gallichand, J. and D. Marcotte. 1993. Mapping clay content for subsurface
drainage in the Nile Delta. Geoderma 58:165–179.
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